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Performance Targets
Power Performance: 
� Reboiler Duty < 2.0 GJ/tonne CO2

� Plant Efficiency < 7 points loss

Economic Indicators: 
� % Increase in COE < 50%
� Cost of CO2 Avoided < $45/tonne

Develop novel, non-aqueous CO2 scrubbing 
solvents and capture process that 
substantially reduces the parasitic energy 
penalty and corresponding increase in cost 
of electricity for post-combustion CO2

capture compared to state-of-the-art CO2

capture processes

Current Situation
� State-of-the-art CO2 capture processes have high thermal and 

electrical energy requirements
� Large quantity of high quality steam required for solvent regeneration 

→ derates low-pressure steam turbine
� Large compression energy requirement due to low CO2 partial pressure 

generated during solvent regeneration → derates electrical generation
� Parasitic power load ranges from 1,200 to 1,500 kJe / kg CO2

� State-of-the-art CO2 capture processes have high capital and 
operating costs
� Extremely large process equipment
� Expensive materials of construction due to corrosivity of solvents
� High degradation rates due to O2 and SO2 in flue gas
� Evaporative losses and wastewater treatment requirements

� Result
� Increase in Cost of Electricity (ICOE): > 65%
� Cost of CO2 Avoided: > $60 / tonne

� Current USDOE ICOE targets for post-combustion CO2 capture 
processes <35%. 

� Chemical degradation by water
� Water reacts with stronger bases producing the hydroxide anion
� CO2 is absorbed as a bicarbonate salt requiring more energy for regeneration

� Physical accumulation of water from flue gas in solvent
� Flue gas from wet FGD is saturated (~15%) with water vapor
� Water can condense or be desiccated by non-aqueous solvents in the absorber 

vessel under optimal absorption conditions until VLLE is established

� Solids formation in rich solvent
� Many non-aqueous solvents form insoluble solids at high CO2 loadings
� Solids can accumulate in packing or other undesirable areas in the process

� Viscosity of solvent
� Affects rate of CO2 capture and operation of columns
� Impacts size of absorber and regenerator vessels

� Foaming
� Many aqueous and non-aqueous solvents foam when purged with gases
� Anti-foaming agents must be added to avoid entrainment and frothing

Technical Challenges for Non-Aqueous Solvents

Development approach is focused on addressing these 

and additional challenges 

Path to Reducing ICOE and Cost of CO Avoided 

Previous Work Current Project Future Development

Yr 2009-10 2010-13 2014-15 2016-18 2019+

TRL 1 2 3 4 5 6 7 8 9

Proof of Concept/Feasibility

Technology Development Plan
Transitioning from novel solvent concept to commercial 

Laboratory 

Validation

• Comprehensive solvent screening

Relevant Environment 

Validation 

• Bench-scale testing to assess 

Prototype Testing at Power Plant

Background

Development Approach (cont’d)

Advantages
• High CO2 loading capacities
• Low regeneration temperatures
• Not degraded by water

Early Findings on Novel Non-aqueous CO2 Solvents

CO2 Vapor-Liquid Equilibrium 
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Process Engineering
Estimate Reboiler Heat Duty using Short-cut Method2

*Boxed parameters are calculated 

� Short-cut method for estimating the reboiler duty is a very useful tool 
for identifying promising solvent systems

� Uses experimentally collected data (no inferred or estimated properties)
� Has been shown to accurately estimate the reboiler duty (largest 

contributor to the total energy penalty)
� Approach is fundamentally applicable to all gas absorption systems

2 Notz et al. A short-cut method for assessing absorbents for post-combustion carbon dioxide capture. 
International Journal of Greenhouse Gas Control  2011, 5, 3 413-421.
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Y1 Performanc Target

Technology Performance Target

2.5 GJt/tonne CO2

Development Approach

Solvent

Cp 

[J/g K]

∆∆∆∆habs

[kJ/mol]

∆∆∆∆hvap

[kJ/mol]

Xsolv

[mol solvent/ 

mol solution]

∆α∆α∆α∆α

[mol CO2/ 

mol solvent]

Reboiler Heat 

Duty 

[GJ/tonne CO2]

MEA (30%) 3.8 85 40 0.11 0.34 3.22

Lower Energy 
Solvent System
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� 
Sensible Heat Heat of Vaporization Heat of 

Absorption

� Aqueous systems have similar properties such as high heat capacities, heats of 
absorption and vaporization, and high dilutions 

� Reboiler heat duties are similar and can only be improved marginally by lower 
heats of absorption or increase in concentration of amine.

Non-aqueous solvent systems
� Desirable physical and chemical properties to lower reboiler duty
� Multiple reaction pathways 

Amine Carbamates
∆Habs = 50-95 kJ/mol
Rate ≈ 10,000 s-1

Regeneration temp: ~120 °C

Potential Pathways for CO2 Capture in Non-Aqueous Solvents

Reactor

Saturator

Heater

CO2 Analyzer

Chiller

Condenser

Experimental Resources

Path to Reducing ICOE and Cost of CO2 Avoided 

ICOE 

Break Down1

56%

Power 

Consumption

33%

Capital 

Expense 

11%

Operating 

Expense 
= + +

� Largest contributor to ICOE is the Power Consumption → Reboiler Duty
1 Rochelle, G. T. Amine Scrubbing for CO2 Capture. Science  2009, 325, 1652-1654.

Reboiler Heat Duty Contribution Breakdown
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• Comprehensive solvent screening
• Identify solvent systems 
• Determine thermodynamic and physio-

chemical properties for novel systems

• CO2 capture process modeling
• Develop comprehensive process model
• Evaluate novel process configurations 

and integration schemes
• Compare performance with 

conventional solvent systems

• Bench-scale testing to assess 
solvent performance
• Continuous flow CO2 capture unit
• Long term (1,000 hours) stability 

testing with high-fidelity flue gas
• Collect process data to support 

simulation and design of pilot unit de

• CO2 capture process modeling
• Update process models
• Technical and economic assessment

Highly Automated Solvent Evaluation System

Fully-automated VLE and Reaction Calorimeter

Capabilities
• Vapor-liquid Equilibrium (PCO2 vs CO2 Loading)
• Reaction Calorimetry (Heat of CO2 Absorption)
• Specific Heat Capacity
• Vapor Pressure

RTI’s Non-Aqueous Solvents:
� Are selective for non-aqueous reaction pathways in 

the presence of water
� Have low water solubility and therefore form a 

separate liquid phase in the presence of water
� Maintain a system-wide water balance without 

distillation and offer low-energy separation options
� Have low regeneration temperatures allowing use of 

lower quality steam

Water accumulation is a major hurdle for non-

aqueous systems

Phase 

Separation
Mixed Amine Carbamates
∆Habs=  50-80 kJ/mol
Rate ≈ 100 s-1

Regeneration  temp.~  90°C

Additional Pathways with Water Present
Amine Bicarbonates
∆Habs = 65-105 kJ/mol
Rate ≈ 10 s-1

Regeneration temp: ~120 °C

Automated Gas 

Switching

Automation, 

Control, and 

Acquisition

Batch 

Charge 

Vessel

Calorimeter / 

Equilibrium 

Cell

Carbonate Esters
∆Habs=  50-80 kJ/mol
Rate ≈ not determined
Regeneration temp. ~ 90°C

Long-Term Testing with High-fidelity Flue Gas
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Case 12 – Supercritical PC Power Plant 
Constant Coal Feed Rate [2,005,660kWt]

CO2 Capture

Scenario

Net 

Power

[kWe]

Net 

Efficiency

[%]

Efficiency 

Point Loss

Parasitic 

Power Load1

[kJe/kg CO2]

No Capture 784,700 39.1 - N/A

With Capture

Econamine FG+
545,995 27.2 11.9 1,511

Non-Aqueous Solvents

CarboKatz 643,585 32.1 7.0 900

SugavaSep 672,729 33.6 5.5 710

ColemaClean 642,788 32.1 7.0 900

LesemaLiquid 631,385 31.5 7.6 970

Conditions:

CO2 Capture Extent: 90 %
CO2 Absorber Temperature:  40°C
Crossover Temp. Approach:  10°C
Regenerator Temperature:    120°C
Regenerator Pressure:          2000 mbar

� Process model of a supercritical PC power plant has been developed 
to estimate parasitic power load and net energy penalty (Aspen Plus)

� Basis: Case 12 – Supercritical PC Power Plant with CO2 Capture. Cost and 
Performance Comparison of Fossil Energy Power Plants (2007), DOE/NETL-
2007/1281.

Current and Planned Activities

� Non-aqueous solvent CO2 capture processes have much lower 
parasitic power loads

� Primarily due to lower quantity and quality of steam required for solvent 
regeneration

� Parasitic power load [kJe / kg CO2] of non-aqueous solvents is 
approx. 50% of state-of-the-art CO2 capture processes

� Potential for significant reduction in increase in cost of electricity

Results:
� Non-aqueous solvents have regeneration 

energies < 2.5 GJt/tonne CO2

� > 35 – 55 %  reduction compared to 
SOTA  processes

� Design and construction of a bench-scale process unit for evaluating 
non-aqueous solvents  in a representative process configuration, 
under realistic conditions with real, fossil fuel derived flue gas

� Installed, commissioned, and operational by January 2012

� Long-term evaluation of non-aqueous solvents with real flue gas
� Continued detailed technical and economic assessment

Absorption:
Temperature: 30°C
Flue Gas Composition:

14%CO2,  4%O2, 50 ppm SO2, Bal. N2

Water Content: Solvent fully saturated 

Regeneration:
Temperature: Ramp to 75°C
Gas Composition: N2 Purge
Water Content: Solvent fully saturated

Evaluation Conditions

Solvents evaluated continuously for ~400 hours
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